Search results for "Postnatal neurogenesis"

showing 5 items of 5 documents

Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury.

2018

Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-contai…

0301 basic medicineRHOAanimal structuresventricular-subventricular zoneBiology03 medical and health sciences0302 clinical medicinegait behaviorNeuroblastCell MovementNeuroblast migrationLateral VentriclesGeneticsmedicineAnimalsreproductive and urinary physiologyN-cadherinNeuronsneuronal migrationneuronal regenerationneonatal brain injuryCadherinEmbryogenesisfungiCell Biologypostnatal neurogenesisRecovery of FunctionCadherinsEmbryonic stem cellNeural stem cellRadial glial cell030104 developmental biologymedicine.anatomical_structurenervous systemAnimals NewbornBrain Injuriesbiology.proteinMolecular MedicinerhoA GTP-Binding ProteinNeuroscienceNeuroglia030217 neurology & neurosurgeryradial glial cellCell stem cell
researchProduct

Dynamic Changes in the Neurogenic Potential in the Ventricular–Subventricular Zone of Common Marmoset during Postnatal Brain Development

2020

AbstractEven after birth, neuronal production continues in the ventricular–subventricular zone (V–SVZ) and hippocampus in many mammals. The immature new neurons (“neuroblasts”) migrate and then mature at their final destination. In humans, neuroblast production and migration toward the neocortex and the olfactory bulb (OB) occur actively only for a few months after birth and then sharply decline with age. However, the precise spatiotemporal profiles and fates of postnatally born neurons remain unclear due to methodological limitations. We previously found that common marmosets, small nonhuman primates, share many features of V–SVZ organization with humans. Here, using marmosets injected wit…

Cognitive NeuroscienceNeurogenesisPopulationSubventricular zoneNeocortexnonhuman primateventricular–subventricular zoneBiologyHippocampusCerebral Ventriclescommon marmoset03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineSpatio-Temporal AnalysisNeuroblastNeural Stem CellsCell MovementNeuroblast migrationLateral VentriclesmedicineAnimalsdentate gyruseducation030304 developmental biologyCell Proliferation0303 health scienceseducation.field_of_studyNeocortexDentate gyrusNeurogenesisBrainCallithrixpostnatal neurogenesisOlfactory BulbOlfactory bulbmedicine.anatomical_structurenervous systemNeuroscience030217 neurology & neurosurgery
researchProduct

Postnatal Neurogenesis and Neuronal Regeneration

2004

The discovery of neurogenesis in the adult brain has challenged one of the central dogmas of neuroscience. Pioneer reports in rodents seed the ground for a detailed description in birds and reptiles, which was finally confirmed in discrete regions of several mammalian species including humans. This neurogenetical capability may serve as the basis for neuronal regeneration, as has already been described in the reptilian brain, and thus may represent a promising therapeutic approach. Consequently, in the last years there has been an important effort to deepen our knowledge of the biology, the functional significance and the regulation of adult neurogenesis.

Therapeutic approachNeuronal regenerationmedicine.anatomical_structureTriune brainPostnatal neurogenesisDentate gyrusNeurogenesismedicineHair cellBiologyNeuroscienceOlfactory bulb
researchProduct

Postnatal neurogenesis and regeneration in the lizard cerebral cortex

1993

medicine.anatomical_structurebiologyLizardCerebral cortexRegeneration (biology)biology.animalPostnatal neurogenesismedicineNeuroscience
researchProduct

The lizard cerebral cortex as a model to study neuronal regeneration

2002

The medial cerebral cortex of lizards, an area homologous to the hippocampal fascia dentata, shows delayed postnatal neurogenesis, i.e., cells in the medial cortex ependyma proliferate and give rise to immature neurons, which migrate to the cell layer. There, recruited neurons differentiate and give rise to zinc containing axons directed to the rest of cortical areas, thus resulting in a continuous growth of the medial cortex and its zinc-enriched axonal projection. This happens along the lizard life span, even in adult lizards, thus allowing one of their most important characteristics: neuronal regeneration. Experiments in our laboratory have shown that chemical lesion of the medial cortex…

neurogênese pós-natalMedial cortexhippocampushipocampoHippocampusBiologyHippocampal formationcélulas-troncomedicineAnimalsmedial cortexcortex mediallcsh:Scienceneural stem cellsCerebral CortexNeuronsMultidisciplinaryzincLizardsAnatomypostnatal neurogenesisNeural stem cellNerve Regenerationregeneraçãomedicine.anatomical_structurenervous systemzincoCerebral cortexregenerationModels AnimalFascia dentatalcsh:QNeuronSeasonsEpendymaNeuroscienceAnais da Academia Brasileira de Ciências
researchProduct